Bordetella parapertussis PagP mediates the addition of two palmitates to the lipopolysaccharide lipid A.
نویسندگان
چکیده
Bordetella bronchiseptica PagP (PagPBB) is a lipid A palmitoyl transferase that is required for resistance to antibody-dependent complement-mediated killing in a murine model of infection. B. parapertussis contains a putative pagP homolog (encoding B. parapertussis PagP [PagPBPa]), but its role in the biosynthesis of lipid A, the membrane anchor of lipopolysaccharide (LPS), has not been investigated. Mass spectrometry analysis revealed that wild-type B. parapertussis lipid A consists of a heterogeneous mixture of lipid A structures, with penta- and hexa-acylated structures containing one and two palmitates, respectively. Through mutational analysis, we demonstrate that PagPBPa is required for the modification of lipid A with palmitate. While PagPBB transfers a single palmitate to the lipid A C-3' position, PagPBPa transfers palmitates to the lipid A C-2 and C-3' positions. The addition of two palmitate acyl chains is unique to B. parapertussis. Mutation of pagPBPa resulted in a mutant strain with increased sensitivity to antimicrobial peptide killing and decreased endotoxicity, as evidenced by reduced proinflammatory responses via Toll-like receptor 4 (TLR4) to the hypoacylated LPS. Therefore, PagP-mediated modification of lipid A regulates outer membrane function and may be a means to modify interactions between the bacterium and its human host during infection.
منابع مشابه
pagP is required for resistance to antibody-mediated complement lysis during Bordetella bronchiseptica respiratory infection.
To efficiently colonize and persist in the lower respiratory tract, bacteria must survive multiple host immune mechanisms. Bordetella bronchiseptica is a gram-negative respiratory pathogen that naturally infects mice and persists in the lower respiratory tract for up to 49 days postinoculation. In this work, we examined the effect of mutation of the pagP gene on the persistence of B. bronchisep...
متن کاملBordetella parapertussis survives inside human macrophages in lipid raft-enriched phagosomes.
Bordetella parapertussis is a human pathogen that causes whooping cough. The increasing incidence of B. parapertussis has been attributed to the lack of cross protection induced by pertussis vaccines. It was previously shown that B. parapertussis is able to avoid bacterial killing by polymorphonuclear leukocytes (PMN) if specific opsonic antibodies are not present at the site of interaction. He...
متن کاملThe O antigen is a critical antigen for the development of a protective immune response to Bordetella parapertussis.
Despite excellent vaccine coverage in developed countries, whooping cough is a reemerging disease that can be caused by two closely related pathogens, Bordetella pertussis and B. parapertussis. The two are antigenically distinct, and current vaccines, containing only B. pertussis-derived antigens, confer efficient protection against B. pertussis but not against B. parapertussis. B. pertussis do...
متن کاملExpression of the lipopolysaccharide-modifying enzymes PagP and PagL modulates the endotoxic activity of Bordetella pertussis.
Lipopolysaccharide (LPS) is one of the major constituents of the gram-negative bacterial cell envelope. Its endotoxic activity causes the relatively high reactogenicity of whole-cell vaccines. Several bacteria harbor LPS-modifying enzymes that modulate the endotoxic activity of the LPS. Here we evaluated whether two such enzymes, i.e., PagP and PagL, could be useful tools for the development of...
متن کاملGenetic basis for lipopolysaccharide O-antigen biosynthesis in bordetellae.
Bordetella bronchiseptica and Bordetella parapertussis express a surface polysaccharide, attached to a lipopolysaccharide, which has been called O antigen. This structure is absent from Bordetella pertussis. We report the identification of a large genetic locus in B. bronchiseptica and B. parapertussis that is required for O-antigen biosynthesis. The locus is replaced by an insertion sequence i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bacteriology
دوره 197 3 شماره
صفحات -
تاریخ انتشار 2015